Not yet released - Shipping date approx. 17 Mar 2026
84 ELITE Points earned with this purchase! Earn 250 for a $10 Reward!
Not an ELITE Member? Join ELITE here
This book explores how deep learning enhances statistical methods for hypothesis testing, point estimation, optimization, interpretation, and other aspects. It uniquely demonstrates leveraging deep learning to improve traditional statistical approaches, showcasing their superior performance in practical applications. Each topic includes essential background, clear method explanations, and detailed R code demonstrations through case studies. This allows readers to directly apply these methods to their own challenges and easily adapt the underlying principles to related problems.
This book delves into statistical inference, introducing advanced strategies for hypothesis testing and point estimation. These innovative methods ingeniously combine both artificial and human intelligence, offering robust solutions for scenarios where traditional optimal analytical solutions are elusive or non-existent. A prime example of their real-world impact is in adaptive clinical trials, where these computational approaches can be readily implemented to optimize trial design and outcomes. The author further explores the multifaceted benefits of deep-learning-assisted statistical methods, extending beyond mere statistical efficiency. It highlights crucial features such as integrity protection, ensuring the trustworthiness of results; computational efficiency, enabling faster and more scalable analyses; and interpretability, which is increasingly vital for transparent communication of complex findings in modern statistics. This section encourages readers to consider a broader spectrum of improvements for new statistical methods, focusing on attributes that enhance their practical utility and societal relevance. Finally, the reader is given a critical examination of the limitations and potential concerns associated with the methods presented in earlier chapters. Crucially, it doesn't just identify these issues but also offers constructive mitigation approaches. This equips readers with essential techniques to safeguard AI-based methodologies with their scientific expertise, ensuring responsible and valid application of these powerful computational tools in diverse scientific and practical domains.
This book is a valuable resource for students, practitioners, and researchers integrating statistics and data science techniques to solve impactful real-world problems.
Title: Deep-Learning-Assisted Statistical Methods With Examples In R
Format: Hardback Book
Release Date: 17 Mar 2026
Type: Tianyu Zhan
Sku: 3550316
Catalogue No: 9781041158455
Category: Maths
![]() |
Help you find exactly what you are looking for, even if you aren't sure yourself! |
![]() |
Track down the hard to find as quickly as possible - if it's available, we will get it! |
![]() |
Deliver fast and friendly service to every customer. |
![]() |
Provide you with the hottest, the latest and a great range. |
![]() |
And if you're not satisified, you can exchange or with a receipt, get your money back - no questions asked! |